Modifed T-coil Network

JIM HAGERMAN Hughes-JVC Technology Corp., 2310 Camino Vida Roble, Carlsbad, CA 92009; Internet: 72230.1704@compuserve.com

9/12/95
The interface between two amplifiers or circuits can often lead to bandwidth limiting. Figure 1 shows a typical situation where the output current of an amplifier is converted to a voltage by a load resistance and the input capacitance of the following stage. The -3 dB bandwidth is given by

$$
f_{3 d B}=\frac{1}{2 \pi R_{L} C_{L}}
$$

Figure 1. Typical RC network.
Many years ago Tektronix developed an interface network called a bridged T-coil which has some outstanding properties. When the component values are chosen appropriately, the input impedance is perfectly resistive $\left(\mathrm{R}_{\mathrm{L}}\right)$ at all frequencies - no more capacitive loading on the driving amplifier. In addition, output bandwidth is increased by a factor of 2.5 over the circuit of Figure 1. The difficulty with T-coil design is the construction of the transformer formed by L_{1} and L_{2}. The fractional magnetic coupling must be set precisely for proper operation. Design equations from Tektronix are given as
$L_{1}=\frac{C_{L}}{4}\left[1+\frac{1}{4 \zeta^{2}}\right]\left(R_{L}+R_{S}\right)^{2}-R_{L} R_{S} C_{L}-L_{S}$
$L_{2}=\frac{C_{L}}{4}\left[1+\frac{1}{4 \zeta^{2}}\right]\left(R_{L}+R_{S}\right)^{2}-L_{S}$
$M=\frac{C_{L}}{4}\left[R_{L}^{2}-R_{S}^{2}-\frac{1}{4 \zeta^{2}}\left(R_{L}+R_{S}\right)^{2}\right]+L_{S}$
$C_{B}=\frac{C_{L}}{16 \zeta^{2}}\left[\frac{R_{L}+R_{S}}{R_{L}}\right]^{2}$
$k=\frac{M}{\sqrt{L_{1} L_{2}}}$.

It is desireable to have no magnetic coupling. Then simple low cost fixed value inductors can be used in place of the transformer. The author's modified Tcoil adds a series resistance $\mathrm{R}_{\text {comp }}$ which is determined by setting M to zero. R_{S} and L_{S} model the interconnection parasitics. The new circuit is given in Figure 2.

Figure 2. Modified T-coil network.
The solution for $R_{\text {comp }}$ is
$R_{\text {comp }}=\left(\frac{\sqrt{R_{L}^{2}-\left(1+4 \zeta^{2}\right)\left[R_{L}^{2}\left(1-4 \zeta^{2}\right)-\left(\frac{16 \zeta^{2} L_{S}}{C_{L}}\right)\right]-R_{L}}}{\left(1+4 \zeta^{2}\right)}\right)-R_{S}$.
The equations for L_{1}, L_{2}, and C_{B} are the same as before but with R_{S} replaced by the quantity ($\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\text {comp }}$). Unfortunately, under some conditions $\mathrm{R}_{\text {comp }}$ may calculate as negative or imaginary in which case the modification is not realizable \square

