SPICE Model Formulas

Jim Hagerman 11/26/91

Id3

= 3.0 p-n

Pick two points on Vd - Id curve at low Id. one at highest Id.

Use reverse recovery time info. Ir is negative.

Pick three points on Cd - Vd curve. One at V = 0, one at low V, one at high V. Start with VJ = 0.5, then iterate M and VJ. Vd is negative.

2.0 Schottky
Use breakdown voltage and leakage currents. Wbr is negative.

Subcircuit. Uses two diode, one voltage source.

DY diode is made as a normal diode except for breakdown.

IBV = 2 Ir leakage at 80% of breakdown

DX, VX, use zener current and impedance.

$$VX = Vz - \frac{[\ln(Iz / 10e-14) + 1]}{38.5} - Rz(Iz - Ir)$$

```
.model _name npn()
.model _name pnp()
```

BF = Hfemax

Pick two points on Vbe - Ic curve at low Ic.

= Ic1 exp[-38.5(Vbe1/NF)]

Pick two points on Vbesat, Vcesat - Ic curves. One at low Ic, one at \max Ic. Ic/Ib is usually 10.

RC = Vcesatmax - Vcesatmin

NR = NF

BR = IS{exp[38.5(Vbesatmin - Vcesatmin)/NR]}

Ib - (IS/BF){exp[38.5(Vbesatmin/NF)]}

Pick two point on Vce - Ic graph at higher Ic. Else use hoe.

VAF = Ic/hoe - Vce

Find Ic at intersection of upper asymptote on Hfe - Ic curve. Pick two points on lower asymptote. Il is at intersection of lower asymptote.

IKF = Ic at intersection

NE =
$$\frac{NF}{1 - \ln(BF) - \ln(hfe2)}$$
 $\frac{\ln(II) - \ln(IC2)}{\ln(BF) - \ln(BF)}$

ISE = $(IS/BF)[I1/IS]^(1 - 1/NE)$

Pick three points on C - V curves. One at Vr = 0, one at low Vr, and one at high Vr. Start with a guess of VJx = 0.5 and MJx = 0.3, then iterate. Note Vrx is negative. If capacitance at Vr = 0 is unknown, then use:

CTV = C[1 - Vr/VJxl^MJx

CTC = Cobo or Ccb at Vr = 0

MJC = ln(C1/C2)

ln((VJ - Vr1)/(VJ - Vr2)) V.TC = Vr1

1 - [CJC/C1]^(1/MJC)

XCJC = 0.8

CJE = Cibo or Cbe at Vr = 0

MJE = similar to MJC

VIE = similar to VJC

CJS = Ccs collector to substrate

MTS = gimilar to MIC

= similar to VJC V.TS

Pick two points on ft - Ic curve, one at max, and the intersection of the asymptote for high Ic rolloff. Leave VTF at infinity. = 1

2(pi)ftmax XTF = 4

TF

BR

ITF = Ic at upper asymptote.

Use storage time data. If forward and reverse currents are unknown.use second equation.

TR = ts BR ln[(Ibf + Ibr)/(Ic/BF + Ibr)]

TR = 2 ts

```
.model _name njf()
.model _name pjf()
```

Use Vgsoff or Vgs - Id curve. Vgs may be negative. Also Idss.

VTO = Vgsoff
BETA = Idss

VTO^2 BETA = vfs

2[1 + LAMBDA(Vds)][Vgs - VTO]

BETA = Id 2(Vds)(Vgs - VTO) - Vds^2

Use vos data.

LAMBDA = yos

BETA (VTO^2)

Pick two points on yfs - Id curve, one at high Id, one at low Id.

RS = yfs1[ln(Id2)/ln(Id1)]

yfs2{yfs1[ln(Id2)/ln(Id1)] + 1}
Use capacitance data at Vr = 0.

CGS = Cqso

CGD = Cqdo

PB = Vqs - Vds

1 - [CGD/Cds]^2

Use Vgsoff - Id curve. Note Vgs may be negative. Vbs is negative.

PHI = 0.6

Use Vgsoff - Vbs curve.

Use Vgs - Id curve. Pick a point at high Id.

Pick two points on Vds - Id curve at high Id.

Id

Pick two points on gfs - Id graph, one at high Id, one at low Id.

RD = RS